EBS 1° GL

Chapitre 3 : Les Fonctions

I. Principe et généralités

1.1) Les fonctions en Python

En programmation, les fonctions sont trés utiles pour réaliser plusieurs fois la méme opération au sein
d’un programme. Elles rendent également le code plus lisible et plus clair en le fractionnant en blocs
logiques.

Une fonction peut étre :
¢ Prédéfinie par le langage (print, input, ...) ;

& Crée par I'utilisateur afin d’exécuter un certain traitement.

1.2) Principes

Le principe général d’une fonction est le suivant :

¢ Une fonction peut recevoir de 0 a n variables entre parenthéses. Ces variables sont appelées
arguments ;

¢ Elle effectue une action ;
¢ Elle peut renvoyer un résultat.

Chaque fonction effectue en général une tache unique et précise. Si cela se complique, il est plus judicieux
d’écrire plusieurs fonctions (qui peuvent éventuellement s’appeler les unes les autres). Cette modularité
améliore la qualité générale et la lisibilité du code.

II. Définition

La syntaxe utilisée pour la définition d’une fonction est :

def nom fonction(liste parametres) :

#Instructions

Programmation Python 33

EBS 1° GL

Notons que la syntaxe de def utilise les deux-points, un bloc d’instructions est donc attendu. De méme que
pour les boucles et les conditions, 1’indentation de ce bloc d’instructions (appelé aussi corps de la
fonction) est obligatoire.

Si la fonction retourne un résultat, on utilise le mot clé return.

Exemple :

def courbe (x):
#Calculer f(x) = 2x+3
return ((2*x)+3)
y= courbe (5)
print ("La valeur de y est " +str (y))

On aura :

La valeur de y est 13

Dans I’exemple précédent, on passé un seul argument a la fonction courbe() qui nous a renvoyé une valeur
qui sera immédiatement affichée a I’écran avec I’instruction print().

Le résultat renvoyé par une fonction doit étre récupérable dans une variable.

Notons qu’il est possible de définir une fonction qui ne renvoie pas forcément une valeur.

Exemple :

def fahrenheit (celsius):
#Conversion degré Celsius en degré Fahrenheit """
print (celsius*9.0/5.0 + 32.0)

fahrenheit (0)

32.0

fahrenheit (24)

75.2

temperature = 13

Programmation Python 34

EBS 1° GL

fahrenheit (temperature)
55.4

Dans ce cas, la fonction fahrenheit() recoit le parametre celsius, exécute la conversion nécessaire et affiche
le résultat. Par conséquent, inutile de récupérer dans une variable le résultat renvoyé par une telle fonction.
Si on essaie tout de méme, on aura le résultat suivant :

var = fahrenheit (5)
print (var)
41.0 # Affichage a partir de la fonction fahrenheit ()

None # contenu de la variable var

lll. Passage d’arguments

Comme dans n’importe quel langage de programmation, le nombre d’arguments que 1’on peut passer a
une fonction est variable.

Python est en effet un langage au « typage dynamique », c’est-a-dire qu’il reconnait automatiquement le
type des variables au moment de 1’exécution. Ainsi, il n’est pas obligatoire de préciser le type des
arguments passées si les opérations effectuées avec ces arguments sont valides.

Exemple 1 :
def produit (x, vy):

print (x*y) # La fonction revoit la valeur x * y

produit (6,4) # Passage de deux entiers
24
produit (3.15,2) # Passage d’un réel et d’un entier

6.3

Programmation Python 35

EBS 1° GL

produit ("bonjour! ",2) # Passage d’un texte et d’un entier
bonjour! bonjour!
L’opérateur « * » reconnait plusieurs types (entiers, réels, chaines de caracteres). La fonction produit() est

donc capable d’effectuer des taches différentes.

Méme si Python autorise cela, ce type d’opérations doit étre effectué avec précaution puisque cette
flexibilité peut engendrer, par la suite, des résultats inattendus ou inexplicables.

Exemple 2 :
Créer une fonction distance() qui calcule la distance euclidienne en trois dimensions entre deux points.

On rappelle que la distance euclidienne d entre deux points A et B de coordonnées cartésiennes respectives
(xA,yA,zA) et (xB,yB,zB) se calcule comme suit :

2

i = V""I(:r:f; —z4)? + (yp —ya)* + (2B — z4)*

Solution :

def distance (xa,ya,za,xb,yb,zb):
d= ((xa-xb)**2) + ((ya-yb)**2) + ((za-zb)**2)
distance = d**0.5
return distance

xa=ya=za=0 # initialisation multiple

xb=yb=zb=1

d3d = distance(xa,vya, za,xb,yb, zb)

print (d3d)

- 1.7320508075688772

Programmation Python 36

EBS 1° GL

IV. Renvoi de résultats

Contrairement a d’autres langages, Python permet qu’une fonction revoie plus qu’un résultat.
Exemple :
La fonction produit(x,y) permet de renvoyer deux résultats :

¢ x*y:opérateur « * » ;

& x’: opérateur « ** ».

Exemple :
def produit (x, Vy):

return x*y, x**y
print (produit (2,4))

Résultat :

(8,16)

V. Valeurs par défaut pour les parameétres

Dans la définition d’une fonction, il est possible de définir un argument par défaut pour un ou plusieurs
parameétres. On obtient ainsi une fonction qui peut étre appelée avec une partie seulement des arguments
attendus.

Exemple :
Une fonction qui calcule le prix TTC d’un article.

def ttc (prixht, tauxtva=0.15):
return prixht* (l+tauxtva)

montant = ttc (10,0.1)

print (montant)

a payer = ttc (20)

print (a_payer)

Programmation Python 37

EBS 1° GL

- 11.0

- 23.0
Dans la définition de la fonction, la valeur par défaut de « taux tva » est fixée a 15 %. ainsi, deux scénarios
peuvent avoir lieu :

¢ Lors du premier appel : La valeur « tauxtva » est définie a 10 % ainsi, le calcul se fait sur la base
de la valeur définie lors de I’appel et ignore ainsi la valeur par défaut (0.15) ;

¢ Lors du second appel, on se limite a définir la valeur du « prixht ». Ainsi, le calcul se fait en
évaluant la valeur de TVA a celle définie par défaut.

Il est donc possible d’appeler la fonction ttc() soit en lui passant un ou deux parametres.

VI. Variables locales et variables globales

Lorsqu’on manipule des fonctions, il est essentiel de bien comprendre comment se comportent les
variables. Une variable est dite locale lorsqu’elle est créée dans une fonction. Elle n’existera et ne sera
visible que lors de I’exécution de la fonction ou elle a été définie.

Une variable est dite globale lorsqu’elle est créée dans le programme principal. Elle sera visible partout
dans le programme.

Vil. Appel d’'une fonction dans une autre fonction

L’appel d’une fonction en Python peut étre :
& Soit a partir du programme principal ;
& Soit a partir d’une autre fonction.

Généralement, on peut appeler une fonction de n’importe ou a partir du moment ot elle est visible par
Python (c’est-a-dire chargée dans la mémoire).

Exemple :

On utilisera une fonction calc() pour calculer les solutions de 1’équation f(x) = x2+2x+3 pour les valeurs
allant de 4 a 10. Ainsi :

¢ La fonction calc() initialise une liste vide et la remplit progressivement avec les valeurs calculées ;

¢ La fonction calc() appelle, pendant chaque itération, la fonction ploynome() pour faire 1’opération
nécessaire, et récupere le résultat de 1’opération afin de 1’insérer dans la nouvelle case de la liste.

Programmation Python 38

EBS 1° GL

définition des fonctions
def polynome (x):
return (x**2+2*x+3) #x2+2x+3
def calc (debut, fin):
liste = []
for x in range (debut,fin+l):
liste.append (polynome (x))
return liste
programme principal
y=calc(4,10)
print (y)

- [27, 38, 51, 66, 83, 102, 123]

VIII. Les fonctions lambda

Viil.1) Présentation

Python propose un autre moyen de créer des fonctions extrémement courtes car limitées a une seule
instruction. Ces fonctions sont appelées « fonctions lambda ».

En fait, il n’y a aucune différence réelle entre une fonction classique et une fonction lambda. Elles sont
utilisées par golit ou pour des raisons de style.

En effet, les lambdas sont tres pratiques pour créer des fonctions jetables : quand on a besoin d’une
fonction, mais que I’on ne va I’utiliser qu’une seule fois.

Une fonction lambda se caractérise par :
¢ Utilisation du mot clé lambda au lieu de def ;
¢ pas de parentheses ;

¢ pas de mot clé return.

Programmation Python 39

EBS 1° GL

Viil.2) Syntaxe

VIII.2.A) Déclaration

La définition d’une fonction lambda se fait comme suit :

lambda argument 1, argument 2, .., argument n : instruction

D’abord, on a le mot-clé lambda suivi de la liste des arguments, séparés par des virgules. Ensuite figure un
nouveau signe les deux points « : » et I’instruction de la fonction lambda. C’est le résultat de l'instruction
qui sera placé ici qui sera renvoyé par la fonction.

Vii.2.B) Appel

L’appel d’une fonction lambda peut se faire en stockant la fonction lambda nouvellement définie dans une
variable, par une simple affectation.

VIII.3) Exemple

f = lambda x: x*x
print (£(10))
print (£(-3))

- 100

IX. Fonctions récursives

Une fonction récursive est une fonction qui s’appelle elle-méme. Les fonctions récursives permettent
d’obtenir une certaine efficacité dans la résolution de certains algorithmes comme le tri rapide.

Exemple :
Parmi les exemples des fonctions récursives les plus connus, on cite celui de la fonction factorielle :

Version non récursive :

def factorielle(n):

fact = 1

Programmation Python 40

EBS 1° GL

for 1 in range (2,n+1l):
fact = fact*i
return fact
programme principal
nb = 5
valeur =factorielle (nb)
print ("La factorielle de " +str(nb)+" est "+str(valeur))

Version récursive :

def factorielle(n):
if n == 1:
return 1
else
return n*factorielle (n-1)
prog principal
print (factorielle(5))

Dans les deux cas, on obtient le méme résultat : 120

En général, la récursivité est utilisée lorsqu’une expression dans la fonction nécessite un résultat qui peut
étre produit par un appel a la fonction elle-méme.

Notons qu’il est important, dans ce genre de fonctions, de s’assurer qu’il y a une condition permettant de
stopper les appels récursifs, sinon on peut entrer dans une récursion sans fin (de la méme fagon qu’on peut
avoir des boucles while sans fin).

X. Regles LGI

Lorsque Python rencontre une variable, il va traiter la résolution de son nom avec des priorités
particulieres.

Programmation Python 41

EBS 1° GL

D’abord il va vérifier si la variable est locale, puis si elle n’existe pas localement, il vérifiera si elle est
globale et enfin si elle n’est pas globale, il testera si elle est interne (par exemple la fonction len() est
considérée comme une fonction interne a Python, elle existe a chaque lancement du logiciel).

On appelle cette regle la regle LGI (Locale, Globale, Interne).
Exemple :

from math import pi
def unefonction ():
pi = 10

print ("Dans la fonction, la valeur de pi est : " +str
(p1))

Programme principal

print ("La valeur initiale de pi depuis la bibliotheque math

est : " +str(pi))

pi = 5

print ("Nouvelle valeur de pi en tant que variable : " +str
(pi))

unefonction ()

print ("La valeur de pi apres l'appel de la fonction : " + str
(pi))

— La valeur initiale de pi depuis la bibliothéque math est
3.141592653589793

— Nouvelle valeur de pi en tant que variable : 5
— Dans la fonction, la valeur de pi est : 10

— La valeur de pi apres l'appel de la fonction : 5

Programmation Python 42

	Chapitre 3 : Les Fonctions
	I. Principe et généralités
	I.1) Les fonctions en Python
	I.2) Principes

	II. Définition
	III. Passage d’arguments
	IV. Renvoi de résultats
	V. Valeurs par défaut pour les paramètres
	VI. Variables locales et variables globales
	VII. Appel d’une fonction dans une autre fonction
	VIII. Les fonctions lambda
	VIII.1) Présentation
	VIII.2) Syntaxe
	VIII.2.A) Déclaration
	VIII.2.B) Appel

	VIII.3) Exemple

	IX. Fonctions récursives
	X. Règles LGI

