
EBS 1e GL

Chapitre 2 : Structures algorithmiques en Python

I. Notion d’indentation

En python, la structuration des blocs d’instructions se fait grâce à l’indentation3 (le décalage visuel avec
des espaces) : les lignes consécutives qui ont la même indentation appartiennent au même bloc ; une ligne
ayant une indentation moindre termine le bloc d’instructions constitué par les lignes qui la précèdent.

Une instruction composée est formée d’une instruction d’introduction terminée par le caractère deux-
points « : », suivi par un bloc d’instructions simples indentées par rapport à cette instruction
d’introduction.

Les lignes du bloc secondaire d’instructions sont alignées entre elles et décalées (indentées) par rapport à
la ligne d’introduction.

→ Les principales instructions composées sont :

 L’instruction conditionnelle if ;

 L’instruction de boucle for ;

 L’instruction de boucle conditionnelle while.

II. Les conditions

II.1) Synthaxe

L’instruction if est une instruction composée. Elle signifie « si ».

3 D’autres langages utilisent d’autres méthodes pour structurer les blocs d’instructions : en C, C++,
Java, PHP… la structuration se fait grâce à des accolades {}. En Pascal, ADA… la structuration se
fait grâce aux mots clés begin et end.

Programmation Python 17

Illustration 6: Format d’une instruction composée en Python

EBS 1e GL

Sa syntaxe est la suivante :

if condition1 :

bloc1

elif condition2 :

bloc2

elif condition3 :

bloc3

else :

bloc4

Remarque :

Les conditions de test placées entre if et « : » sont appelées prédicats.

II.2) Conditions simples if-else

La première ligne de l’instruction if condition : est appelée clause if et la condition est une expression
booléenne évaluée à True ou False.

La ligne suivante, nous avons un bloc d’instructions. Un bloc est simplement un ensemble d’une ou de
plusieurs instructions. Lorsqu’un bloc d’instructions est suivi de la clause if, Il est connu comme bloc if.
Notons que chaque instruction à l’intérieur du bloc if doit être indentée du même nombre d’espaces.

Exemple :

n = int(input("Entrez un nombre: "))

Entrez un nombre: 13

if (n%2)==0:

 print ("C'est un nombre pair")

else:

 print ("C'est un nombre impair")

C'est un nombre impair

Programmation Python 18

EBS 1e GL

II.3) Conditions multiples if-elif-else

Comme dans les autres langages de programmation, seule la ligne if condition1 est obligatoire.

On peut mettre autant de lignes elif condition_n que l’on souhaite (entre 0 et plusieurs). On peut mettre au
maximum une seule ligne else. On ne doit pas préciser de condition après le mot clé else.

Exemple :

Si les trois notes d’un étudiant sont : 12, 8, 14 alors on a :

 Moyenne arithmétique : (12+8+14)/3 = 34/3 =11,34 ;

 Moyenne de la mauvaise et de la meilleure : (14+8)/2=22/2=11

On choisira donc la première moyenne.

n1 = float(input("saisir la premiere note :"))

n2 = float(input("saisir la deuxieme note :"))

n3 = float(input("saisir la troisieme note :"))

m1 = (n1+n2+n3)/3

m2 = 0

if n1 <= n2 <= n3 or n3 <= n2 <= n1:

 m2 = (n1+n3)/2

elif n2 <= n1 <= n3 or n3 <= n1 <= n2:

 m2 = (n3+n2)/2

else:

 m2 = (n1+n2)/2

if m1 > m2:

 print("la meilleure note est : ", m1)

else:

Programmation Python 19

EBS 1e GL

 print("la meilleure note est : ", m2)

III. Les boucles

En Python, on distingue 2 types de boucles : for et while.

III.1) Boucle for

La boucle for permet de répéter un bloc d’instructions un certain nombre de fois.

III.1.A) Format

Le format d’une boucle for est :

for compteur in séquence :

bloc d’instructions

III.1.B) Exemples

III.1.B.a) Affichage d’un texte lettre par lettre
Affichage d’un texte lettre par lettre ; le compteur « cpt » permet de parcourir la chaîne « message ».

message="Python"

for cpt in message:

 print (cpt)

P

y

t

h

o

n

→ Notons que les doubles côtes ne sont pas pris en compte lors de l’affichage.

Programmation Python 20

EBS 1e GL

III.1.B.b) Afficher les valeurs entre deux bornes
Pour réaliser cette opération, on utilise la fonction range() ; cette fonction admet 3 paramètres :

 Valeur de départ (intervalle fermé) ;

 Valeur finale (intervalle ouvert) ;

 Pas (par défaut =1, dans ce cas il est facultatif).

Ainsi, le format de la fonction range est : (valeur_de_départ, valeur_d’arrivée-1, pas)

Exemple :

for i in range (1,5):

 print (i)

On obtient donc :

1

2

3

4

III.1.B.c) Afficher inversement les valeurs entre deux bornes

Dans ce cas, il faut réaliser deux changements :

 Inverser les bornes de la boucle ;

 Ajouter le pas (- 1 par exemple).

Exemple :

for i in range (4,0,-1):

 print (i)

On obtient :

4

3

2

Programmation Python 21

EBS 1e GL

1

III.2) Boucle while

C’est une instruction composée. Elle permet de répéter un bloc d’instructions tant qu’une condition reste
vraie.

III.2.A) Format

La syntaxe est :

while condition :

 bloc d’instructions

III.2.B) Exemple

a=2

while a<=25:

 a+=3

 print (a)

5

8

11

14

17

20

23

26

→ l’affichage de la valeur 26 s’explique par l’ancienne valeur de la variable a, en fait 23 < 26 donc la
variable a sera incrémentée de 3, l’affichage de la nouvelle valeur aura lieu et la boucle s’arrête puisque 26
> 25 !

Programmation Python 22

EBS 1e GL

III.3) Modifier l’exécution d’une boucle

Python fournit des contrôles supplémentaires pour le suivi de l’exécution d’une boucle. Les deux mots
clés break et continue permettent de réaliser ce contrôle.

Ces deux commandes doivent être manipulées avec prudence, car le fait d’abuser ou de mal utiliser ces
mots-clés, peut rendre les programmes difficiles à lire et à déboguer.

III.3.A) Le mot clé break

La commande break permet l’interruption immédiate d’une boucle.

Exemple 1 :

On interrompt l’exécution de la boucle à la deuxième itération.

for i in range(10):

 print("debut de l'iteration", i)

 if i == 2:

 break

 print("fin de l'iteration", i)

 print ("Suite du prgramme")

On obtient le résultat suivant :

debut de l'iteration 0

fin de l'iteration 0

Suite du prgramme

debut de l'iteration 1

fin de l'iteration 1

Suite du prgramme

debut de l'iteration 2

Programmation Python 23

EBS 1e GL

Exemple 2 :

Le code suivant interrompt l’affichage d’un texte dès l’apparition de la lettre « a ».

for lettre in "ordinateur":

 if lettre == "a":

 break

 print (lettre)

print("Fin")

Résultat :

o

r

d

i

n

Fin

III.3.B) Le mot clé continue

Contrairement à break, la commande continue termine une itération.

On reprend les même exemples de la section précédente.

Exemple 1 :

for i in range(4):

 print("debut de l'iteration", i)

 if i == 2:

 continue

 print("fin de l'iteration", i)

Programmation Python 24

EBS 1e GL

 print ("Suite du prgramme")

On obtient le résultat suivant :

debut de l'iteration 0

fin de l'iteration 0

Suite du prgramme

debut de l'iteration 1

fin de l'iteration 1

Suite du prgramme

debut de l'iteration 2

debut de l'iteration 3

fin de l'iteration 3

Suite du prgramme

Ainsi, le message de la fin de l’itération ne sera affiché que lorsque la valeur de i > 2.

Exemple 2 :

for lettre in "ordinateur":

 if lettre == "a":

 continue

 print(lettre)

print("Fin")

Programmation Python 25

EBS 1e GL

Résultat :

o

r

d

i

n

t

e

u

r

Fin

IV. Les listes

IV.1) Notion de liste

En Python, le type list est un type de données qui permet de former une suite ordonnée d’éléments.

Les éléments d’une même liste peuvent être des données de tous types4.

On écrit les éléments d’une liste python entre deux crochets, séparés par des virgules :

Exemple :

groupe=["abc",51,12,True,"Informatique"]

print (type(groupe))

<class 'list'>

4 La notion de liste en Python est identique à celle dans le langage R, ainsi contrairement au langage C/
C++ ou le Pascal, les listes, appelées tableaux, ne peuvent contenir qu’un seul type de données à la
fois.

Programmation Python 26

EBS 1e GL

IV.2) Opérations sur les listes

IV.2.A) Taille d’une liste

Le nombre d’éléments d’une liste s’appelle sa longueur. Elle est renvoyée par la fonction len().

print (len (groupe))

5

IV.2.B) Accès

Les éléments d’une liste sont repérés par leur indice. Les indices d’une liste commencent à 0. Python
détecte automatiquement l’utilisation d’index invalides et génère une erreur (exception).

Exemple :

print (groupe [3])

True

print (groupe [8])

IndexError: list index out of range

IV.2.C) Modification

Pour modifier un élément, il suffit de préciser son indice.

Exemple :

groupe[0]=3.2

print (groupe)

[3.2, 51, 12, True, 'Informatique']

IV.2.D) Ajout d’éléments

On peut ajouter un élément à la f i n d’une liste grâce à la méthode append().

groupe.append("classe")

print (groupe)

['abc', 51, 12, True, 'Informatique', 'classe']

Programmation Python 27

EBS 1e GL

IV.2.E) Suppression d’un élément

On peut supprimer un élément grâce aux méthodes pop() ou remove().

IV.2.E.a) La méthode pop()

Par défaut, elle permet de supprimer le dernier élément d’une liste, sinon, il faut préciser l’indice de
l’élément à supprimer.

print (groupe.pop())

classe

print (groupe.pop (0)) # Le premier élément sera supprimé

3.2

print (groupe)

[51, 12, True, 'Informatique']

IV.2.E.b) La méthode remove()

Cette méthode doit recevoir en paramètres la valeur de l’élément à supprimer.

Exemple :

groupe.remove (51)

print (groupe)

[12, True, 'Informatique']

IV.2.F) Test d’appartenance

On peut tester l’appartenance d’un élément à une liste grâce à l’opérateur in.

print (36 in groupe)

False

IV.2.G) Inverser les éléments d’une liste

Pour inverser les éléments d’une liste, on utilise la fonction reverse().

Programmation Python 28

EBS 1e GL

Exemple :

liste = [1,2,3,4]

liste.reverse()

print (liste)

[4, 3, 2, 1]

IV.2.H) Itérations

Il y a deux méthodes pour afficher les valeurs d’une liste avec une boucle for :

IV.2.H.a) Itérer sur les éléments de la liste
Exemple :

for e in groupe:

print (e)

12

True

Informatique

IV.2.H.b) Itérer sur les indices des éléments de la liste
C’est-à-dire sur une suite d’entiers : On accède à la totalité de la liste ou à un sous-ensemble.

Exemple 1 :

for k in range(3): # 3 c’est la taille de la liste

print (groupe [k])

12

True

Informatique

Programmation Python 29

EBS 1e GL

Exemple 2 :

liste = [5,6,7,8]

for x in range(1,3): #Accès aux éléments d’indice 1 et 2

 print (liste[x])

6

7

Programmation Python 30

	Chapitre 2 : Structures algorithmiques en Python
	I. Notion d’indentation
	II. Les conditions
	II.1) Synthaxe
	II.2) Conditions simples if-else
	II.3) Conditions multiples if-elif-else

	III. Les boucles
	III.1) Boucle for
	III.1.A) Format
	III.1.B) Exemples
	III.1.B.a) Affichage d’un texte lettre par lettre
	III.1.B.b) Afficher les valeurs entre deux bornes
	III.1.B.c) Afficher inversement les valeurs entre deux bornes

	III.2) Boucle while
	III.2.A) Format
	III.2.B) Exemple

	III.3) Modifier l’exécution d’une boucle
	III.3.A) Le mot clé break
	III.3.B) Le mot clé continue

	IV. Les listes
	IV.1) Notion de liste
	IV.2) Opérations sur les listes
	IV.2.A) Taille d’une liste
	IV.2.B) Accès
	IV.2.C) Modification
	IV.2.D) Ajout d’éléments
	IV.2.E) Suppression d’un élément
	IV.2.E.a) La méthode pop()
	IV.2.E.b) La méthode remove()

	IV.2.F) Test d’appartenance
	IV.2.G) Inverser les éléments d’une liste
	IV.2.H) Itérations
	IV.2.H.a) Itérer sur les éléments de la liste
	IV.2.H.b) Itérer sur les indices des éléments de la liste

